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Kurzzusammenfassung 
Im Rahmen der geologischen CO2 Speicherung (GCS) stellt sich die Schlüsselfrage wie zuverlässig CO2 
im Boden verbleibt. Dazu werden Labor-Experimente an der Universität Bergen durchgeführt mit dem 
Ziel Simulationsmodelle zu entwickeln und verbessern und um gleichzeitig auf visuelle Art und Weise 
zu vermitteln, welche physikalischen Prozesse ein Teil dieser sind. Hierfür werden Tracer als Farbgeber 
genutzt, die im Kontakt durch Farbveränderungen die Entwicklung der CO2-Konzentration im porösen 
Material anzeigen. Die zur Farbauswertung in Bergen entwickelte Bildanalyse-Software DarSIA wertete 
zunächst die Bilder des Experiments nur auf Basis von monochromatischen Informationen durch die 
Reduktion auf ein skalares Signal auf Pixelebene aus. Weil multichromatische Tracer jedoch ein 
besseres Abbild der dargestellten Konzentrationen und damit einen höheren Informationsgehalt 
ermöglichen, sollte die Erweiterung für eine multichromatische Auswertung der Bilder geprüft werden. 
Als Lösung zur Berechnung der dargestellten Konzentration wird daher in dieser Arbeit unter anderem 
eine Interpolation von definierten Farb-Konzentrationspunkten vorgeschlagen, die auf alle Farbpixel 
angewandt werden kann. Als Interpolationsmethode wird neben der Nearest-Neighbour Methode auch 
die Kernel Methode geprüft. Dabei hat sich die Kernel Methode im Ergebnis als vielversprechender 
Ansatz zur Berechnung der Konzentration von multichromatischen Tracern für die Integration in 
DarSIA erwiesen. 
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Abstract 
In the context of geological CO2 storage (GCS), the key question is how reliably CO2 remains in the 
underground. Laboratory experiments are being conducted at the University of Bergen with the aim of 
developing and improving simulation models and, at the same time, communicating in a visual way 
which physical processes are part of them. For this purpose, tracers are used as colour sensors, which 
allow to visualise the development of the CO2 concentration in the porous material through colour 
changes on contact. Up until now, the image analysis software DarSIA, which has been developed in 
Bergen for colour-based analysis, evaluates the images of the experiment only based on monochromatic 
information by reducing them to a scalar signal at pixel level. However, because multichromatic tracers 
provide a better representation of the represented concentrations and thus a higher information content, 
the extension for an image analysis based on multichromatic information should be explored. As a 
solution for the determination of the represented concentration, this work therefore proposes, among 
other approaches, an interpolation of defined colour concentration pairs, which can be applied to all 
colour pixels. In addition to the nearest neighbour method, the kernel method is also tested as an 
interpolation method. As a result, the kernel method was identified to be a promising approach to 
determine the concentration of multichromatic tracers for an integration in DarSIA. 
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1 Introduction 
Climate change is one of the most important challenges of our time. The global long-term shift of 
temperatures in the last two centuries is mainly caused by human activities [1] through the combustion 
of fossil fuels like coal, gas, and oil. These processes emit greenhouse gasses like CO2 which, when 
released to the atmosphere, drive the climate change in a process called the greenhouse effect [2]. 
Currently the global CO2 emissions and the concentration of CO2 in the atmosphere are still increasing 
[2]. 

1.1 Motivation: Successful carbon capture and storage 
To mitigate and turn around the climate change, the emissions and concentration of CO2 in the 
atmosphere must be reduced. One of the major courses of actions to achieve this goal is Carbon Capture 
and Storage (CCS) according to most of the IPCC forecasting scenarios [2]. On the storage part, a 
promising and currently popular way is the injection and sequestration of CO2 in geological subsurface 
reservoirs because of its maturity and large potential for scalability [3]. The first large scale CO2 storage 
project is the Sleipner project which started in the 90s off the coast of Norway. A current CCS project 
in Norway is the Northern Lights project which aims to establish transport chains and the industrial 
sequestration of CO2. 

Subsurface reservoirs are porous and allow fluids like water and CO2 to flow through the pores of 
permeable rocks, which makes it possible to inject and store CO2. The modelling of CO2 flow in the 
underground is important for the success of geological carbon storage (GCS). Simulations are especially 
important to estimate the long-term security (e.g., leak scenarios) of the sequestration and to optimise 
the storage site (e.g., well placement, injection strategies). Modelling and simulating those reservoirs 
are challenging tasks due to the large range of length and time scales. The reservoir can have a span of 
hundreds of kilometres in horizontal direction and the time horizon for CO2 storage is in the order of 
thousands of years. At the same time, the porous media processes happen at the pore scale of the rocks. 
All things considered, in the end the success of CO2 storage depends on the potential of long-term 
storage.  

Because it is a relatively new field, long term data on the dynamics of CO2 in the underground does not 
exist. This makes it difficult to calibrate, validate and improve the simulation models. To tackle this lack 
of information, research groups at the University of Bergen have introduced an experimental setup – the 
FluidFlower – to gather data on how CO2 and other fluids behave in a lab setup [4]. The special feature 
of this experiment is the representability of real-world underground reservoirs at a smaller time and 
length scale and the repeatability of the experiments [5]. The concept of GCS and its representation in 
the FluidFlower is shown in Figure 1.1. High resolution photographs are used to capture the happenings 
and visual information in the FluidFlower. The gathered data can be used to test porous media models 
against it [6] and to gain insights into the happenings in the underground [4]. 

 

Figure 1.1: CCS in the real world and in the lab; Left: Schematic of different kinds of GCS including 
pure CO2 storage offshore and onshore and enhanced oil recovery (EOR) taken from [7]; Right: CO2 
injection in the medium sized FluidFlower geometry. The CO2 is visible in yellow. 
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The use of pH-sensitive dyes in the FluidFlower allows colour-based visualisation of the dynamics and 
flow of injected CO2. This is based on the mechanism of CO2 dissolving and – depending on its 
concentration – changing the pH-value of its solution to a non-neutral value which in turn changes the 
colour of the pH-sensitive dye in the solution. Colour and intensity of the pH-sensitive dye change 
depending on the concentration of dissolved CO2. In more general terms, the pH-sensitive dye acts as a 
CO2-concentration tracer. A tracer that changes its intensity based on one colour for different 
concentrations is called monochromatic throughout this paper. A tracer that additionally changes its 
colour depending on the concentration is called multichromatic. Examples of a monochromatic and two 
multichromatic tracers are shown in Figure 1.2.  

 

Figure 1.2: Cropped region of the FluidFlower photographs with two examples of a multichromatic 
CO2 concentration tracer and a monochromatic tracer. Left: Blue monochromatic tracer at the interface 
with the clean water; Right: Two multichromatic CO2 tracers with two different pH-sensitive dyes. 
Formation water has a CO2 concentration of 0. CO2 (g) is CO2 in its gaseous form and CO2 (aq) is 
dissolved CO2 indicated by the pH-sensitive dye. Taken from [8] 

Multichromatic tracers are preferably used since they potentially allow to visualise more information 
(concentration). In comparison to monochromatic tracers, multichromatic tracers have the potential to 
better represent and map the concentrations in different colours. This delivers more accurate results in 
a colour-based analysis. 

The information visible in the FluidFlower photographs needs to be analysed quantitatively to make use 
of the gathered data. To analyse multichromatic tracer FluidFlower experiments quantitatively, the 
quantitative information as physical meaningful field variables (concentration) needs to be extracted 
from the information visible as tracer colours in the images. 

1.2 Goal: Quantitative analysis of FluidFlower experiments 
The task of obtaining information from an image is called image analysis. The porous media group at 
the Department of Mathematics at the University of Bergen has developed an image analysis toolbox 
called DarSIA (Darcy scale image analysis) [9]. The GitHub repository for DarSIA is publicly available 
[10]. DarSIA is a toolbox tailored to analysing and processing images with the goal of retrieving physical 
data from porous media experiments. Currently, DarSIA already contains a concentration analysis 
workflow which is capable of analysing experiments containing monochromatic information and 
extracting continuous concentration data. However, the analysis of multichromatic tracers is not yet 
supported. 

Hence, the goal of this thesis is to develop and test a method for extracting pixel-wise concentration data 
from a two-dimensional photograph of a multichromatic tracer FluidFlower experiment. This general 
method can then be used to determine a concentration profile for the image. 
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1.3 Structure 
Following this introduction, Chapter 2 contains a short summary of the Propaedeutic, which is attached 
as an appendix. The Propaedeutic covers relevant background information for this thesis, such as 
literature and theories. These fundamental studies are the starting point for this work.  

Chapter 3 provides a description of a multichromatic tracer model experiment in the FluidFlower. This 
so-called model experiment will serve as the basis for the development and testing of the methods for a 
concentration analysis.  

In Chapter 4, the image analysis toolbox DarSIA and its existing methods for a quantitative 
concentration analysis based on monochromatic pixel information will be discussed and adapted for the 
concentration analysis of multichromatic tracers.  

In Chapter 5, a new approach is proposed to determine the tracer concentrations on pixel level of 
multichromatic tracer images using interpolation methods. Here, the kernel method will be suggested as 
an appropriate interpolation. 

This thesis ends with a promising outlook in Chapter 6. 

All code examples used in this thesis are publicly available in a GitHub repository [11]. 
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2 Fundamental studies: Propaedeutic and 
Literature 

The literature and theoretical background for this bachelor’s thesis can be found in the Propaedeutic that 
is appended at the end of this document. The Propaedeutic precedes and lays the base for the studies in 
this thesis by covering and reviewing the current and relevant literature. This work is interdisciplinary, 
and the propaedeutic therefore covers a wide range of topics, which are divided into chapters 2-6. The 
following overview of the covered topics is taken directly from the introduction of the Propaedeutic 
[12]. It is recommended to read the Propaedeutic before reading this thesis. It will be cited and referenced 
throughout the thesis as [12] 

The second chapter is about the carbon capture and storage (CCS) concept and will cover some 
motivational literature. This includes a short introduction in the storage aspect of CCS and specifically 
in the geological storage of carbons. This is the real-world application for the FluidFlower experiments 
and the studying of CO2 dynamics in porous underground reservoirs. 

The third part focuses on the FluidFlower concept. This is the experimental setup that is used as an 
example application for the DarSIA toolbox in this thesis. A description of the experimental setup with 
its limitations and properties and a motivation on how the experiments are linked to the real world and 
geological carbon sequestration is given. 

The fourth part will cover the basic concepts of describing and modelling flow in porous media. This is 
important in understanding the physics in the porous structure of the FluidFlower and thus understanding 
the phenomena that are present in the experiment. This includes a discussion on scales of porous media 
and the upscaling of physics which will also lay the base and motivate concepts used in the DarSIA 
toolbox which will be presented in the fifth chapter. 

The fifth chapter is about DarSIA (Darcy Scale Image Analysis), a toolbox for analysing and processing 
images with the goal of retrieving physical data from experimental images. Besides a brief introduction 
to DarSIA, central questions to be discussed in this chapter are: What information is visible in the 
pictures, and how to get from pore scale picture information to Darcy scale information by image 
processing. 

In chapter 6, an introduction to kernel methods is given with the application of using it for multivariate 
interpolation. This will cover a mathematical definition of kernel methods and a reasoning on why it is 
useful and suitable for the application of sparse and multivariate interpolation. 
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3 FluidFlower: Multichromatic tracer model 
experiment 

The methods discussed in this thesis are developed and tested using a model experiment designed to 
simplify the experimental setup while including all the important features necessary for a multichromatic 
analysis. In this work, this model experiment will be referred to as the model experiment. The model 
experiment is not a CO2 injection experiment but a tracer injection experiment using a multichromatic 
tracer. This makes it possible to ignore the difficulties of CO2 injection in the experimental set-up and 
the image analysis and concentrate on developing a method of analysing multichromatic tracers. 

The model experiment for this work is conducted in a table-size FluidFlower rig (0.9m x 0.6m) in the 
lab of the Department of Physics and Technology at the University of Bergen [4]. The FluidFlower is a 
laboratory sized experiment consisting of a quasi-two-dimensional transparent container that can be 
filled with unconsolidated sands and fluids. The FluidFlower has several injection points in the back 
that make it possible to inject fluids to investigate multiphase flow in those porous media structures. The 
detailed setup of the FluidFlower and its properties can be found in chapter 3 of the Propaedeutic [12]. 

3.1 Simplifications 
The first simplification of the model experiment is the sand geometry in the FluidFlower. The geometry 
consists of a single homogeneous sand as shown in Figure 3.1. This sand has the same porosity, 
permeability, pore size distribution and, most importantly, colour throughout the geometry. This greatly 
simplifies image analysis, allowing to concentrate on developing a methodology for the analysis of 
multichromatic tracers. 

The second simplification concerns the fluids and their injection into the FluidFlower. Instead of 
conducting a CO2 injection that is traced by multichromatic CO2 tracers as described in the Introduction, 
a simpler multichromatic tracer injection is performed. The geometry is initially saturated with a neutral 
transparent fluid. The main idea of the experiment is to inject a multichromatic tracer at a constant rate 
into the porous geometry of the FluidFlower, creating a smooth front due to dispersion effects. This 
multichromatic tracer changes colour depending on its concentration in the initially neutral fluid. The 
temporal evolution of the injection and propagation of the injected plume is shown in Figure 3.1. 

3.2 Data acquisition 
A photo camera takes high resolution RGB photographs of the experiment (more can be found in chapter 
5 of the Propaedeutic [12]) at discrete time-steps 𝑡𝑡𝑖𝑖 with 𝑖𝑖 = 0,1,2, …𝑇𝑇 which are equally distant. In 
Figure 3.1 the photograph of the experiment before the injection starts at timestep 𝑡𝑡0 is displayed. This 
photograph will be called the baseline photograph and is denoted as 𝑢𝑢0 ≔ 𝑢𝑢𝑡𝑡0. Photographs taken after 
the injection start at time steps 𝑡𝑡𝑖𝑖 with 𝑖𝑖 ≥ 1 are called tracer photographs and will be denoted as 𝑢𝑢𝑡𝑡𝑖𝑖. 

3.3 Conduction 
The model experiment used in this thesis is shown in Figure 3.1. The tracer is green near the injection 
point, which is located in the centre of the green area. In this area the tracer has a high concentration 
close to 1. Closer to the interface with the neutral water, the tracer has a lower concentration and shows 
a blue colour. 
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Figure 3.1: 4 photographs in the time series of an example tracer model experiment; Top-left: Baseline 
image before the injection start; The other three photographs show the development of the experiment 
over time. 

The photographs of the experiment (Figure 3.1) show a slight contamination on the left side of the 
geometry with tracer residue from a previous experiment. It is also important to note that not only is 
fluid injected in the experiment, but fluid is also produced at the back of the FluidFlower through another 
of the many valves, which explains the complex shape of the tracer distribution. 

3.4 Photograph interpretation  
The advantage of the simplification of the model experiment is that the physics behind it is also simpler, 
which makes it possible to anticipate some qualitative features of the expected concentration results as 
a physical interpretation of the happenings in the FluidFlower.  

The injection of a fluid into the FluidFlower is a porous transport process. The transport in a homogenous 
porous medium can be described using the porous transport equation which in 1 dimension looks like 
the following 

𝜑𝜑
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑐𝑐(𝑥𝑥, 𝑡𝑡) + 𝑢𝑢𝑢𝑢

𝜕𝜕
𝜕𝜕𝜕𝜕

𝑐𝑐(𝑥𝑥, 𝑡𝑡) − 𝐷𝐷
𝜕𝜕2

𝜕𝜕𝑥𝑥2
𝑐𝑐(𝑥𝑥, 𝑡𝑡) = 0 

with the porosity 𝜑𝜑, the convective velocity 𝑢𝑢, the diffusion coefficient 𝐷𝐷 (in practice dispersion is 
incorporated) and the concentration 𝑐𝑐(𝑥𝑥, 𝑡𝑡). A more detailed description of the transport equation in 
multiple dimensions can be found in Chapter 4 of the Propaedeutic [12]. In 1 dimension, this equation 
has an analytical solution for 𝑐𝑐(𝑥𝑥, 𝑡𝑡) (from [13], [14])  

𝑐𝑐(𝑥𝑥, 𝑡𝑡) =
1
2
�1 −

2
√𝜋𝜋

� 𝑒𝑒−𝑡𝑡2𝑑𝑑𝑑𝑑
𝜑𝜑𝜑𝜑−𝑢𝑢𝑢𝑢
2�𝐷𝐷𝐷𝐷𝐷𝐷

0
�+

1
2
𝑒𝑒
𝑢𝑢𝑢𝑢
𝐷𝐷 �1 −

2
√𝜋𝜋

� 𝑒𝑒−𝑡𝑡2𝑑𝑑𝑑𝑑
𝜑𝜑𝜑𝜑+𝑢𝑢𝑢𝑢
2�𝐷𝐷𝐷𝐷𝐷𝐷

0
� 

For prescribed boundary and initial conditions 

𝑐𝑐(0, 𝑡𝑡) = 1, 𝑡𝑡 ≥ 0 

𝑐𝑐(𝑥𝑥, 0) = 0, 𝑥𝑥 ≥ 0 

𝑐𝑐(∞, 𝑡𝑡) = 0, 𝑡𝑡 ≥ 0 

The term erf(𝑥𝑥) = 2
√𝜋𝜋
∫ 𝑒𝑒−𝑡𝑡2𝑑𝑑𝑑𝑑𝑥𝑥
0  is the so-called error function. The analytical solution using the 

following parameters can be seen in Figure 3.2. 
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𝑡𝑡 = 1,𝐷𝐷 = 0.01,𝑢𝑢 = 1,𝜑𝜑 = 1 

The chosen parameters are not related to the model experiment and are just chosen for illustrative 
purposes. 

 

Figure 3.2: Analytical solution to the transport equation in 1 dimension at 𝑡𝑡 = 1 and D=0.01, u=1, φ=1 

Analogously, it is also possible to look at a 1 dimensional-like line in the FluidFlower experiment as 
drawn in Figure 3.3. The line covers all visible concentrations from close to the injection point on the 
left to the neutral fluid on the right. This choice of the position corresponds to the boundary conditions 
of the transport equation and corresponding analytical solution which makes it possible to qualitatively 
compare the concentration along that line to the analytical solution. 

 

Figure 3.3: A representative line in the multichromatic tracer model experiment from a region of 
concentration 1 to a region of concentration 0.  

According to the analytical solution shown in Figure 3.2, the qualitative expectations for the 
concentration profile are the following. 

• Monotonically decreasing concentration profile from high concentrations to low concentrations. 
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• Inversed s-shape of the concentration curve 
• Smooth continuous concentration profile.  

These characteristics define a measurement for the comparison and evaluation of the in this thesis 
discussed methods. The resulting concentration profiles can be compared to the above described 
physical interpretation. 
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4 DarSIA: Concentration analysis and adaption for 
multichromatic tracers 

DarSIA (Darcy Scale Image Analysis) is an open-source image analysis toolbox developed by the 
Mathematics Department at the University of Bergen [9], available publicly [10]. It offers capabilities 
to analyse images of porous media to extract physical data. DarSIA is especially designed to upscale 
information that is obtained at the pore scale via photographs or scans to a continuous Darcy scale 
information.  

There is a particular workflow implemented in DarSIA called “ConcentrationAnalysis” that contains 
several image processing routines that can be used to extract concentration data from images. For this 
thesis important routines are the following 

1) Preprocessing of the photograph  
2) Subtracting images 
3) Restoring and upscaling of information 
4) Signal reduction  
5) Signal modelling  

Steps 1 to 3 are directly applicable to multichromatic tracer images without any modifications. Step 4, 
the signal reduction, is where the multichromatic information is reduced to monochromatic information 
by design, resulting in a loss of information. This means that in the existing workflow, tracers can only 
be processed based on a monochromatic analysis, which works for monochromatic tracers but means a 
loss of information for multichromatic tracers. This step will be adapted for multichromatic analysis as 
a first approach to multichromatic tracer concentration analysis. 

The steps are applied to an example multichromatic tracer image to demonstrate the functionality, 
limitations, and adaptations of the existing analysis in the following sections of this chapter. The 
example tracer image 𝑢𝑢𝑡𝑡 will be an example timestep 𝑡𝑡 of the model experiment as seen in Figure 4.1 
on the left.  

4.1 Preprocessing of the photographs 
The data acquisition of the experiments using a camera is often imperfect. For example, in Figure 4.1, 
the frame of the FluidFlower and the transparent top are visible in the photograph. Other common 
distortions are caused by automated corrections performed by the camera. The process of correcting 
these distortions is called preprocessing.  

In this example, cropping is used to crop the FluidFlower geometry to where the tracer is visible. DarSIA 
has several other correction methods that are particularly important for multi-image analysis, such as 
colour and drift correction to correct for possible illumination fluctuations or unintended camera 
movements. Other corrections include bulge correction and curvature correction, which are particularly 
important when analysing images of the room-scale FluidFlower, which is curved and requires careful 
projection onto a planar rectangular domain to enable 2D image analysis. Furthermore, sophisticated 
correction routines in DarSIA make it possible to align grains in a image registration routine for multiple 
images. From now on, it is assumed for the images of the model experiment, that the sand grains in the 
images are aligned. These steps are essential for the accuracy of the quantitative results. However, in 
this methodological work the simple cropping method is sufficient. The results are shown in Figure 4.1. 
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Figure 4.1: A example timestep 𝑡𝑡 of a multichromatic tracer experiment; Left: Original photograph 𝑢𝑢𝑡𝑡; 
Right: The preprocessed corrected tracer image 𝑢𝑢𝑡𝑡���  

We denote the corrected baseline image before the injection start as 𝑢𝑢�0 and the corrected tracer image 
at the timestep 𝑡𝑡 as 𝑢𝑢�𝑡𝑡. 

4.2 Subtracting images 
Taking the difference of images is used to subtract information that is present in both pictures. To track 
the dynamic changes (the tracer dynamics) in the FluidFlower, the static information such as the porous 
sand geometry is removed by subtracting images. Therefore, the baseline image 𝑢𝑢0��� (Figure 4.2, left) 
where no tracer and only the sand geometry is visible is subtracted from the actual tracer image 𝑢𝑢𝑡𝑡��� 
(Figure 4.2, right). This results in the difference image 𝑢𝑢𝑡𝑡′ . 

𝑢𝑢𝑡𝑡′ = 𝑢𝑢𝑡𝑡��� − 𝑢𝑢0��� 

 

Figure 4.2: Left; The corrected tracer image 𝑢𝑢𝑡𝑡���; Right: The corrected baseline image 𝑢𝑢0��� 

The pixel values resulting from that subtraction are not an RGB colour anymore since the subtraction of 
images produces negative values which is not part of the original RGB space anymore. As introduced 
in 3.2, the original tracer image 𝑢𝑢𝑡𝑡 is a RGB photograph. The RGB colours are assumed to be available 
as a float. This means that every pixel of the image 𝑝𝑝 ⊂ 𝑢𝑢𝑡𝑡 is in 𝑝𝑝 ∈ [0,1]3. After subtracting the baseline 
from the tracer image, a pixel 𝑝𝑝 ⊂ 𝑢𝑢𝑡𝑡′  now has a value 𝑝𝑝 ∈ [−1,1]3. Those pixel values are from now 
on called relative colours. The displaying of the difference image is not possible with conventional 
image displaying methods due to the negative relative colour values. However, one can still visualise 
the pixel-wise positive and the absolute value of negative relative colours separately using conventional 
image displaying methods to illustrate the subtraction effect. This can be seen in Figure 4.3. 
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Figure 4.3: Difference image; Left: Absolute value of negative values of the difference image 
visualised; Right: Positive values of the difference image visualised 

The procedure of subtracting images is not dependent on the colour space of the image and can also be 
done in other colour spaces. 

4.3 Restoration and upscaling 
Smoothing the image is the central part of the restoration and upscaling of the in the images contained 
physical information. A more detailed explanation of the upscaling of information and its relation to the 
upscaling of porous media can be found in the Propaedeutic in Chapter 5 [12].  

In this work the isotropic Bregman algorithm [15] as implemented in the python library scikit-image 
[16] is used to perform a Total Variation Denoising (TVD) of the image. The parameters e.g. the 
denoising weight 𝜆𝜆, the numerical stopping criterion 𝜖𝜖 and the maximum number of iterations for the 
algorithm 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 are chosen as follows 

𝜆𝜆 = 0.025 

 𝜖𝜖 = 1 × 10−4 

𝑛𝑛max = 100 

This choice aims on a smooth image so that the sand grains are not visible as sand grains anymore 
(compare to Figure 4.4). The resulting smooth image is denoted as  

𝑢𝑢𝑡𝑡∗ 

This smooth image can also be visualised using only the absolute value of the pixel wise negative values 
analogue to the section before which is shown in Figure 4.4. 
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Figure 4.4: Effect of the image smoothing; Left: The absolute value of the negative pixel-wise values of 
the difference image prior to the smoothing; Right: The absolute value of the negative pixel values of 
the smoothed image after applying the smoothing routine. 

The smoothing of the image with the Bregman algorithm is also applicable without modifications in a 
colour space that is not the RGB colour space. 

4.4 Signal reduction 
The signal reduction is used to reduce the multi-dimensional relative colour (resulting from the previous 
steps in the previous sections) in each pixel to a 1-dimensional scalar signal. This is the main routine 
(together with the signal modelling in 4.5) of extracting the concentration data from the tracer images 
in the existing DarSIA concentration analysis. In DarSIA a few signal reduction methods are 
implemented. Examples include the reduction to one channel of the relative colour or to one channel of 
the colour space transformed relative colour. Possible transformations are the greyscale and the HSV 
colour space. The transformation to the HSV space leads to the HSV signal reduction. It is important to 
note, that negative relative colours after transforming might result in negative HSV colours. 
Nevertheless, the routine can still be applied. By design, the HSV signal reduction as all the other 
implemented signal reductions only extracts a monochromatic information from the image. However, 
this reduction has been identified to be the most promising for an adaption to multichromatic information 
as a first approach to a multichromatic concentration analysis.  

4.4.1 HSV signal reduction for monochromatic signals 
Prior to the HSV signal reduction, the information (one tracer colour) needs to be characterised with a 
hue threshold interval by the user. This interval defines the range of for that tracer characteristic colour 
through its hue value. Each pixel of the image whose colour lies outside that hue threshold interval is 
set to 0. The image is then pixel-wise reduced to the value component of the remaining HSV colours. 
Here lies the limitation to monochromatic signals because only one hue range can be handled for 
characterisation. 

This reduction approach is motivated by the idea, that the HSV value component represents the intensity 
of the characteristic colour which is assumed to correlate with the concentration of the tracer. 

4.4.2 HSV signal reduction adapted to multichromatic signal analysis 
Adapting the HSV signal reduction to multichromatic information is based on the idea of using multiple 
hue thresholds for multiple characteristic colours of the multichromatic tracer. A reduced signal is 
obtained for all characteristic colours using the existing HSV signal reduction with the corresponding 
threshold. In a next step, those signals are merged with weighted addition to one resulting signal.  

The process will be demonstrated in a small region in the model experiment photograph (see Figure 
4.5). 
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Figure 4.5: Representative region of interest with all visible colours of the tracer 

The hue threshold values for each characteristic colour of the tracer are obtained by histogram analysis 
of the hue values in a small patch of the image where that colour is predominant. The histogram analysis 
shows which hue values are most frequent in that patch and limits containing those colours define the 
threshold. The two chosen patches for the two characteristic colours of the multichromatic tracer in the 
model experiment are shown in Figure 4.6. 

 

Figure 4.6: HSV transformed image region of Figure 4.5 with two patches in each characteristic colour 
region 

The concentrations for the tracer colours are assumed to be 1 for patch A and 0.9 for patch B. These 
choices are arbitrary but comply with the physical interpretation of the tracer image (3.4) and lead to the 
hue interval concentration pairs as shown in Table 4.1. 

Table 4.1: Hue interval concentration pairs for the patches in the model experiment as shown in Figure 
4.6 

Patch 𝑃𝑃 Hue interval concentration  
A [-0.5, -0.4] 1 
B [-0.08,-0.04] 0.9 

 

Using those hue intervals, the scalar signals for each interval can be extracted using the existing HSV 
reduction routine. For the example (Figure 4.5), the two retrieved scalar signals for each characteristic 
colour are shown in Figure 4.7. 
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Figure 4.7: The two signals retrieved with the HSV signal reduction for both characteristic colours. 

These signals are now modelled together to one signal. In its simplest form this could be plain addition 
of the signals which can be seen in the upper plot in Figure 4.8. A more sophisticated approach is to 
normalize both signals to the same intensity and then scale them with their corresponding concentration 
from the hue concentration pairs. This is done in the lower signal in Figure 4.8. 

 

Figure 4.8 Top: both signals added. Bottom: normalised and weighted addition of the two signals 

To compare this result to the physical interpretation of the image as described in 3.4, the concentration 
profile is reduced to 1 dimension. This is done by taking the average value of each vertical pixel column 
in the concentration profile. This reduction results in a 1-dimensional concentration profile which can 
be seen in Figure 4.9 for this case. 

 

Figure 4.9: 1d reduction of the weighted addition signals as shown in Figure 4.8 in the lower plot. 
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The result of merging the two signals in a linear model shows the resulting concentration profile and its 
1d reduction is not smooth as it would be expected according to 3.4. The transition zone between the 
tracer and the neutral fluid on the right is not properly described as it is more an edge than a gradient. 
Also, the region with zero concentration in the middle of the image is not physically reasonable as we 
would expect a smooth monotone behaviour.  

The gab can be explained with the incomplete decomposition of the colour space since the hue thresholds 
do not cover the whole range of tracer colours. However, the use of additional hue range concentration 
pairs in the transition zone between the colours also did not achieve the desired results. Also, different 
weighting approaches or wider choices of the hue ranges were not satisfying. The ever-present problem 
is the non-smoothness of the resulting merged signal with hard edges as already seen in Figure 4.8.  

The unsatisfying results could be resulting from the loss of information when the colours which 
characterise the information in each pixel are reduced to one colour channel while ignoring the 
information present in the other colour channels. This is particularly significant for multichromatic 
tracers as shown above. 

In conclusion, the HSV signal reduction works for monochromatic tracers as demonstrated in other 
works [8] but the extension to multichromatic tracers is not satisfactory. 

4.5 Signal modelling 
The scalar signal that is obtained by the signal reduction must be converted to a physically meaningful 
variable, the concentration. In DarSIA a few simple models are implemented for that purpose which 
include a linear model and thresholding models. 

After applying these models as the final step in the existing concentration analysis, the resulting 
concentration profile can be used for quantitative analysis of the experiment. 

4.6 Interim valuation of DarSIA concentration analysis 
In conclusion, the existing concentration analysis routines of preprocessing, subtraction of images and 
restoration, are usable for the concentration analysis of multichromatic tracer images. The step signal 
reduction has been adapted to multichromatic tracers but the loss of information in that approach 
produces poor resulting concentration profiles which do not correspond to the expected physics. This 
limiting part of the concentration analysis will be the objective of the next chapter. 

In the following chapter a new approach for converting a pixel-colour to a tracer concentration is 
suggested and demonstrated that bases on the concept of interpolation. This method aims on replacing 
the signal reduction and modelling in the concentration analysis with a more general method. 
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5 Interpolation approach using kernel methods 
As seen in the previous chapter, the conversion of colours to tracer concentrations at pixel level is not 
satisfactory for multichromatic tracers in the existing DarSIA concentration analysis due to the 
limitations of the signal reduction. In this chapter, interpolation is suggested as a new alternative to the 
signal reduction as means of converting the colours of a pixel to a concentration with the hope that it 
delivers better results for multichromatic tracers. The interpolation method builds upon the routines as 
described in 4.1-4.3 and complements them to a multichromatic tracer concentration analysis by 
converting the relative colours in the pixels of the smooth image (compare to 4.3) to a concentration 
value of the multichromatic tracer based on known data resulting in a concentration profile for the tracer 
image. 

Chapter 5 is structured as follows. First, the problem of a colour to concentration conversion on pixel 
level is mathematically described as an interpolation problem which is the novel suggestion of this 
chapter. Second, the known data for the model experiment is described as the data basis for the 
application of the interpolation method. The rest of the chapter then discusses varieties in the design of 
the interpolation method with the goal of finding the best suiting out of a selected set of approaches. 
These include the kernel method and the nearest neighbour interpolation. 

All code examples used in this thesis are publicly available in a GitHub repository [11]. 

5.1 Interpolate known data as problem solution 
Interpolation estimates the value of unseen data based on known data. In the context of multichromatic 
tracers this seems like a promising approach, as shown below. 

Assume a known number 𝑛𝑛 ∈ ℕ, 𝑛𝑛 > 0 of relative colours 𝑥𝑥𝑖𝑖 ∈ [−1,1]3 ⊂ ℝ3 and their corresponding 
tracer concentrations 𝑦𝑦𝑖𝑖 ∈ [0,1] ⊂ ℝ. These defined colour-concentration pairs are 

(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) ∈ [−1,1]3 × [0,1]  , 𝑖𝑖 = 1, … ,𝑛𝑛 

The here chosen range [0,1]  of concentration values is an arbitrary choice motivated by volumetric 
concentrations. It is easy to modify the concept for values between 0 and 14 which would be suitable 
for pH-values. 

The interpolation problem is now to find the interpolant 

𝑠𝑠: [−1,1]3 → ℝ 

that takes relative colours from [−1,1]3 and assigns a concentration value under the constraint that the 
function satisfies 

𝑠𝑠(𝑥𝑥𝑖𝑖) = 𝑦𝑦𝑖𝑖         ∀𝑖𝑖 = 1, … , 𝑛𝑛 

This is a multivariate interpolation problem since the photograph colours – and consequently, relative 
colours –  live in a multi-dimensional space. A more general mathematical definition of the interpolation 
problem is given in the Propaedeutic in Chapter 6 [12]. 

The interpolant based on the known colour concentration pairs can now be applied to every pixel of the 
image (unseen data) to obtain an estimation of the concentration in each pixel resulting in a concentration 
profile for the whole image. 

Interpolation approaches and strategies for finding the interpolant are various. In this work, the nearest 
neighbour interpolation and the kernel method with the linear and gaussian kernel will be discussed. 
The kernel method has been chosen because of its various advantages and suitability for multivariate 
interpolation. 
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Additionally, it is possible to translate the image to another colour space prior to the interpolation. 
Consequently, the known colours and the interpolation depend on the chosen colour space. In this work, 
the RGB (original) and the LAB space are discussed. The LAB space is chosen as an alternative because 
it is a uniform colour space, and the hope is that an interpolation in that space gives better results. More 
on colour spaces can be found in the Propaedeutic [12] in Chapter 5. 

The colour concentration pairs are obtained by experiments or expert knowledge. It is not clear how 
different interpolation approaches behave for different amount of input expert knowledge. 

To find the best suiting interpolation method variant of those variations, the following research questions 
must be investigated and answered in this chapter. 

Q1: Which interpolation approach is best suited?  
Q2: Which colour space is best suited? 
Q3: What is the behaviour of the interpolation for different numbers of known colour concentration 

pairs? 

In this chapter, the methods will be tested and demonstrated in a small region of the model experiment 
(Chapter 3), as described in 4.4.2, and the result will be qualitatively compared to the physical 
interpretation of the tracer images, as described in 3.4 as a metric for success. 

5.2 Known data in the model experiment 
Known data is the basis for every interpolation approach. For a multichromatic tracer, this known data 
is the knowledge about specific colours of that tracer and their corresponding concentrations. This 
knowledge is provided by the user as colour concentration pairs for the respective chosen colour space.  

The multichromatic tracer in the model experiment displays three characteristic colours. For a high 
concentration almost 1, it displays a greenish colour; for lower concentrations, a blueish colour; and in 
the limit concentration 0, it is transparent, as seen in the upper plot in Figure 5.1. Those colours 
correspond to relative colours in the smooth RGB and smooth LAB image, as shown in the two lower 
plots in Figure 5.1. The known colours for those smooth images, on which the interpolation will be 
performed, are retrieved using characteristic patches for each characteristic colour as displayed in Figure 
5.1. At the end of this section, it is described how the user can retrieve known colours for the colour 
concentration pairs. 

 

Figure 5.1: Three patches for three characteristic colours; Top: Original photograph of the examined 
region of the tracer experiment; Middle: RGB smooth image; Bottom: LAB smooth image 
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The known colour concentration pairs for the model experiment in the RGB space are given in Table 
5.1 and the pairs for the LAB space are given in and Table 5.2. 

Table 5.1: Known colour concentration pairs in the RGB space 

Patch 𝑃𝑃 Characteristic colour 𝑥𝑥𝑃𝑃 Concentration 𝑦𝑦𝑃𝑃 
A (-0.29, -0.15, -0.21) 1 
B (-0.67, -0.35, 0.05) 0.9 
C (-0.01, -0.01, 0.01) 0 

 

Table 5.2: Known colour concentration pairs in the LAB space 

Patch 𝑃𝑃 Characteristic colour 𝑥𝑥𝑃𝑃 Concentration 𝑦𝑦𝑃𝑃 
A (-0.17,  0.45,  0.51) 1 
B (-0.39,  0.47,  0.25) 0.9 
C (-0.01,  0.51,  0.49) 0 

 

The known concentration for each characteristic colour is obtained by expert knowledge of the tracer. 
However, in the methodical context of this thesis, the known concentrations are chosen arbitrarily, but 
in compliance with the basic physical understanding of the experiment (compare with section 3.4). The 
concentration in patch B is chosen to be low. According to the physical interpretation in 3.4, a 
concentration much closer to 1 would be expected and yet, for the development and discussion of the 
methodology, it is beneficial to choose a slightly lower concentration. 

It is possible to choose more characteristic colours and concentrations as the known data points for the 
interpolation. This allows for more input of expert knowledge. This and how this could improve the 
interpolation is discussed in chapter 5.5.4. 

Histogram analysis of a representative patch to retrieve known colours from an image 
The characteristic colours of a tracer need to be extracted from the smooth image resulting from the 
previous image processing routines as described in chapter 4.1-4.3 in different colour spaces. This 
subsection describes the procedure of extracting known colours from an image using multivariate 
histograms. The method of retrieving characteristic colours is independent of the chosen colour space 
but will be demonstrated in the RGB space. 

The characteristic colour is retrieved by analysing a small patch in a region, where that colour is mostly 
present. Such patches are displayed in Figure 5.2.  

 

Figure 5.2: The smooth RGB image with three different patches A, B and C, for three identified 
characteristic colours. For visualisation purposes, the absolute value of the relative colours is 
visualized. 

The characteristic colour is chosen to be the colour which is the most frequent in the patch. To retrieve 
that colour, a histogram analysis is used. A patch 𝑃𝑃 is a region of the image  with relative colours 𝑥𝑥 ∈
[−1,1]3 in each pixel. These relative colours live in a three-dimensional space. Consequently, extracting 
the most frequent colour in a histogram style approach leads to multivariate histogram analysis. This 
procedure is based on [17]. The set [−1,1]3 is divided into equally sized bins. In three dimensions, these 
have the shape of a cube. The patches have here the size of 100 × 100 pixels, which means a total of 
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𝑛𝑛 = 10 000 pixels. When using the square root rule for histograms, this means to use 𝑘𝑘 = √𝑛𝑛 =
√10000 = 100 bins in each dimension. The bins then are defined as 

𝑏𝑏𝑖𝑖,𝑗𝑗,𝑙𝑙 = [𝑒𝑒𝑖𝑖−1, 𝑒𝑒𝑖𝑖] × �𝑒𝑒𝑗𝑗−1, 𝑒𝑒𝑗𝑗� × [𝑒𝑒𝑙𝑙−1, 𝑒𝑒𝑙𝑙] , 𝑖𝑖, 𝑗𝑗, 𝑙𝑙 = 1,2,3, … ,𝑘𝑘 

with the edges 

𝑒𝑒𝑙𝑙 = −1 + 2
𝑙𝑙
𝑘𝑘

 , 𝑙𝑙 = 0,1,2, … ,𝑘𝑘 

The absolute frequency ℎ in such a bin ℎ�𝑏𝑏𝑖𝑖,𝑗𝑗,𝑙𝑙� is calculated via 

ℎ�𝑏𝑏𝑖𝑖,𝑗𝑗,𝑙𝑙� = ��𝑥𝑥 ∈ 𝑃𝑃 | 𝑥𝑥 ∈ 𝑏𝑏𝑖𝑖,𝑗𝑗,𝑙𝑙�� 

with |∙| being the number of elements in the set. 

After computing the absolute frequency for all bins, the characteristic colour 𝑥𝑥𝑃𝑃 of the patch 𝑃𝑃 is defined 
as the value in the middle of the three-dimensional bin which has the highest absolute frequency 𝑏𝑏char =
𝑏𝑏𝚤𝚤,̅𝚥̅𝚥,𝑙𝑙 ̅. 

𝑥𝑥𝑃𝑃 =

⎝

⎜⎜
⎛

𝑒𝑒𝚤𝚤̅ − 𝑒𝑒𝚤𝚤−̅1
2

𝑒𝑒𝚥̅𝚥 − 𝑒𝑒𝚥̅𝚥−1
2

𝑒𝑒𝑙𝑙̅ − 𝑒𝑒𝑙𝑙−̅1
2 ⎠

⎟⎟
⎞

 

It is important to note, that the characteristic colour 𝑐𝑐𝑃𝑃 is not necessarily present in the image because it 
is a constructed colour resulting from the histogram analysis. 

5.3 Colour space discussion RGB vs. LAB 
As mentioned in 5.1, it is possible to transform the image to different colour spaces prior to applying 
the interpolation. This means that the interpolation is realised in different colour spaces, which raises 
the question of the colour space which gives the best results. 

It will be of interest to investigate the structure of the colour spaces by analysing the arrangement of the 
known tracer colours in the colour space in order to explain the behaviour of the discussed methods in 
the following. 

The structure of colour spaces RGB and LAB is not intuitive, and neither are the addition and subtraction 
of colours in that colour space. To investigate the arrangement of the tracer colours in the colour space, 
9 patches are chosen (shown in Figure 5.3, top) in every region of the tracer to retrieve 9 colours that 
cover the whole range of the tracer.  

These colours can then be plotted in the relative colour space [−1,1]3 , as shown in Figure 5.3. The 
same analysis can be done for the LAB space, which is shown in Figure 5.3 bottom. 
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Figure 5.3: Arrangement of the relative colours retrieved from patches in the colour space; Left: 
Arrangement of relative colours based on the RGB colour space. R*,G*,B* indicate the relative 
character of the colour channels; Right: Arrangement of relative colours based on the LAB colour 
space. L*,A*,B* indicate the relative character of the colour channels 

Comparing those two colour spaces is interesting, because it shows the different structure of the colours 
in the different colour spaces and it makes it clear once more that the whole image processing routine – 
including the kernel interpolation – depends on the choice of the colour space. It stresses the importance 
of research question Q2. 

5.4 Nearest Neighbour interpolation 
The simplest approach on interpolating multivariate data is the nearest neighbour interpolation (NN 
interpolation). The NN interpolation selects for each relative colour in the image 𝑥𝑥 the value of the 
closest known data point. This means that no other data points are considered, and the interpolation 
function is not smooth in terms of differentiating. The advantage is the simplicity of the algorithm. 

The basis for that calculation is the definition of a metric 𝑑𝑑:𝐶𝐶𝐶𝐶 × 𝐶𝐶𝐶𝐶 → ℝ in the colour space 𝐶𝐶𝐶𝐶 that 
measures the distance between two colours. The metric is colour space dependent. In the following, this 
procedure will be shown and discussed in the two colour spaces RGB and LAB, starting with the RGB 
space. 

5.4.1 Nearest neighbour interpolation in RGB 
In RGB, the distance 𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅(𝑐𝑐1, 𝑐𝑐2) between two colours 𝑐𝑐1, 𝑐𝑐2 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅 is calculated with the Euclidian 
norm 

𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅(𝑐𝑐1, 𝑐𝑐2) = ‖𝑐𝑐1 − 𝑐𝑐2‖2 = �〈𝑐𝑐1 − 𝑐𝑐2, 𝑐𝑐1 − 𝑐𝑐2〉 

Other norms and metrics are possible to define on the RGB space, of which most aim to obtain a better 
fit for human perception. 

Applying the nearest neighbour interpolation to the example region of interest gives the following 
resulting concentration profile. 
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Figure 5.4: Results of the nearest neighbour interpolation in RGB; Top: Concentration profile for 
region of interest as described in 5.2 with a concentration scale on the right; Bottom: Analogue to 4.4.2 
1d reduced concentration profile 

The concentration profile is, by design of the nearest neighbour interpolation, not continuous and it 
shows a non-monotonic behaviour in the transition zone to the neutral fluid (pixels 2000-2500). 
Nevertheless, the resulting concentration profile has an overall good behaviour compared to the physical 
interpretation and expectation (3.4).  

5.4.2 Nearest neighbour interpolation in LAB 
The nearest neighbour interpolation can also be applied in the LAB space. The metric is again the 
Euclidian distance 𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿(𝑐𝑐1, 𝑐𝑐2) between two colours 𝑐𝑐1, 𝑐𝑐2 ∈ 𝐿𝐿𝐿𝐿𝐿𝐿 and is calculated by 

𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿(𝑐𝑐1, 𝑐𝑐2) = ‖𝑐𝑐1 − 𝑐𝑐2‖2 = �〈𝑐𝑐1 − 𝑐𝑐2, 𝑐𝑐1 − 𝑐𝑐2〉 

The resulting concentration profile can be seen in Figure 5.5. 

 

Figure 5.5: Results of the nearest neighbour interpolation in RGB; Left: Concentration profile for 
region of interest as described in 5.2; Right: Concentration scale 

This concentration profile shows the same qualitative characteristics as the RGB variant of the nearest 
neighbour interpolation.  
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Summarising, the nearest neighbour interpolation delivers better results than the HSV-signal reduction 
result (compare to 4.4) and therefore strengthens the idea of an interpolation method. The bad behaviour 
of the interpolation in the transition zone to the neutral fluid (pixels 2000-3000) can be explained with 
the arrangement of the colours in the colour space as seen in 5.3. This behaviour can be improved by 
incorporating more colour to concentration pairs.  

In conclusion, the nearest neighbour interpolation is a good simple interpolation approach that is suitable 
for a simple analysis using additional known data pairs. It is also possible that this is a satisfying 
approach for other tracers or colour spaces. However, in terms of robustness and smoothness of the 
interpolation, even for small known data points, an interpolation approach using kernel methods will be 
discussed in the following section. 

5.5 Kernel interpolation for concentration analysis 
Kernel interpolation is a new and advanced technique for addressing the multivariate interpolation 
problem described in 5.1. Its application is particularly well-suited for higher-dimensional and sparse 
data, which aligns with the characteristics of the problem. This method offers flexibility and proves to 
be a suitable choice. 

5.5.1 Kernel interpolation method 
Kernels will be used to find an interpolant in the three-dimensional space of the relative colours of the 
image. A formal definition of a kernel and its properties is given in the Propaedeutic, Chapter 6 [12]. 
The two kernels that are going to be used and tested in this chapter are the linear kernel 𝑘𝑘𝑙𝑙 and the 
gaussian kernel 𝑘𝑘𝑔𝑔 with the user-chosen parameter 𝛾𝛾. 

𝑘𝑘𝑙𝑙(𝑥𝑥1,𝑥𝑥2) = 〈𝑥𝑥1,𝑥𝑥2〉 

𝑘𝑘𝑔𝑔(𝑥𝑥1,𝑥𝑥2) = exp(−𝛾𝛾‖𝑥𝑥1 − 𝑥𝑥2‖2) , 𝛾𝛾 > 0 

The interpolant for the known data is obtained by solving the following linear equation.  

𝐾𝐾𝐾𝐾 = 𝑦𝑦 

with the kernel matrix 𝐾𝐾 = �𝑘𝑘�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗��
𝑖𝑖,𝑗𝑗=1

𝑁𝑁
, the known relative colours {𝑥𝑥𝑖𝑖, … , 𝑥𝑥𝑁𝑁} ⊂ [−1,1]3, the 

known concentrations 𝑦𝑦 = (𝑦𝑦𝑖𝑖)𝑖𝑖=1𝑁𝑁  and the coefficient vector 𝑎𝑎 = (𝑎𝑎𝑖𝑖)𝑖𝑖=1𝑁𝑁 . The known relative colours 
and corresponding concentrations as described in 5.2 are used. 

The interpolant applied to each pixel x of the image is then defined via  

𝑠𝑠(𝑥𝑥) = �𝛼𝛼𝑖𝑖𝑘𝑘(𝑥𝑥, 𝑥𝑥𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

  ,  𝑥𝑥 ∈ [−1,1]3 

This interpolant now estimates a concentration value 𝑠𝑠(𝑥𝑥) = 𝑐𝑐 ∈ ℝ for a relative colour 𝑥𝑥 ∈ [−1,1]3. 
To retrieve the final concentration profile, the interpolant is evaluated in each pixel of the smooth image. 
It is important to note that there is no maximum principle and the value 𝑠𝑠(𝑥𝑥) can be outside of [0,1]. 

After all, the kernel interpolation is a flexible method. The above-described procedure can be varied for 
different kernels, colour spaces and number of colour concentration pairs, as already pointed out in the 
research questions in 5.1. In the following subsections, we investigate the effect of these choices with 
the goal to deduct (through examples) a suitable combination. 

5.5.2 Kernel interpolation with the linear kernel 
The linear kernel 𝑘𝑘𝑙𝑙𝑙𝑙𝑛𝑛 is a natural first choice since it is simple to compute and has no parameters. The 
kernel interpolation method using the linear kernel will be applied in the RGB space and in the LAB 
space with the known colour concentration pairs (Table 5.1, Table 5.2). For the RGB space, the resulting 
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concentration profile is shown in Figure 5.6 and the 1d reduction in Figure 5.7. For the LAB space, the 
resulting concentration profile and 1d reduction is shown in Figure 5.8. 

 

Figure 5.6: Concentration profile using the linear kernel in the RGB space with three colour 
concentration pairs (Table 5.1). Concentration values over 1 are cut off to 1 and values below 0 are cut 
off to 0. Right: The concentration scale 

To compare this result to the physical interpretation of the image as described in 3.4, the concentration 
profile is reduced to 1 dimension analogue to 4.4.2. This reduction results in a 1-dimensional 
concentration profile which can be seen in Figure 5.7, for this case. 

 

Figure 5.7: 1d reduction of the concentration profile seen in Figure 5.6 (analogue to 4.4.2) using the 
linear kernel in the RGB space with three colour concentration pairs (Table 5.2) 

It can be seen that the transition zone on the right from tracer to neutral fluid (between pixels 2000 and 
3000) corresponds to the physical interpretation of the tracer image as seen in Figure 3.2. The peak at 
pixel 1000 and the lack of monotony do not correspond to the physical understanding of the porous 
process (Figure 3.2), but in this mild form they still represent an acceptable result. Nevertheless, the 
question of better results and smoother profiles remains. 
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Figure 5.8: Concentration profiles using the linear kernel in the LAB space with three colour 
concentration pairs (Table 5.2). Top: Concentration profile, Concentration values over 1 are cut off to 
1 and values below 0 are cut off to 0. Bottom: 1d reduction of the concentration profile. 

The transition zone between pixels 2000 and 3000 is as in the RGB space correlating to the expectations 
in 3.4. However, the monotony is worse and the smoothness comparable to the RGB variant. The worse 
performance regarding monotony can be explained with the different structure of the LAB colour space 
in comparison to the RGB colour space, as visualised in 5.2 colour space analysis. 

In conclusion, the linear kernel offers good results, especially in the RGB space, in comparison to the 
previously discussed nearest neighbour interpolation (5.4), with the advantage of no required kernel 
parameters. 

5.5.3 Kernel interpolation with the gaussian kernel 
In this subsection, the method of kernel interpolation will be applied with the gaussian kernel 𝑘𝑘𝑔𝑔. 
Properties and advantages of the gaussian kernel can be found in the Propaedeutic, Chapter 6 [12]. 
Mainly the hope is to get a smoother interpolation and thus concentration profile than with the linear 
kernel as seen in the section before 5.5.2.  

The kernel parameter 𝛾𝛾 > 0 is chosen by the user from experience. As a technical note, values for the 
parameter 𝛾𝛾 can be estimated by using a machine learning inspired approach, commonly referred to as 
the leave one out cross validation.  

The interpolation method 5.5.1 is applied in the RGB and LAB space with the three known colour 
concentration pairs from Table 5.1 for RGB and Table 5.2 for LAB using the gaussian kernel 𝑘𝑘𝑔𝑔 with 
the parameter 𝛾𝛾 = 9.73 for RGB and 𝛾𝛾 = 24.22 for LAB. The resulting concentration profile is shown 
in Figure 5.9 for RGB and Figure 5.10 for LAB. 
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Figure 5.9: Concentration profiles using the gaussian kernel in the RGB space with three colour 
concentration pairs. Top: Concentration profile, Concentration values over 1 are cut off to 1 and values 
below 0 are cut off to 0. Bottom: 1d reduction of the concentration profile. 

The concentration profile of the RGB variant is smoother compared to the linear kernel approach in 
RGB (Figure 5.7). The transition zone between 2000 and 3000 is mapped according to the physical 
interpretation of the image. The transition zone around 1000 is not corresponding to the physical 
expectations from 3.4 regarding monotony. Nevertheless, this concentration profile is already a very 
good approximation for the expected physical interpretation (3.4). 
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Figure 5.10: Concentration profiles using the gaussian kernel in the LAB space with three colour 
concentration pairs. Top: Concentration profile, Concentration values over 1 are cut off to 1 and values 
below 0 are cut off to 0. Bottom: 1d reduction of the concentration profile. 

The resulting concentration profile for the LAB variant (Figure 5.10) is not monotone and the stair 
behaviour is not corresponding to the physical interpretation in 3.4. Overall, the profile is worse than 
the RGB variant (Figure 5.9). 

Due to the worse performance of the LAB space both with the linear and the gaussian kernel, research 
question Q2 can be answered in combination with the considerations of 5.3. The RGB space is the 
preferred colour space in the context of the model experiment. From now on, only the RGB space will 
be considered. 

Research question Q1 can also be answered after comparing the linear kernel and the gaussian kernel. 
The nearest neighbour interpolation is a simple approach, useful for fast calculations and when 
smoothness is not necessary. The linear kernel is useful because it does not require a parameter and it 
delivers good results for little amount of known data, with the drawback of non-smoothness and non-
monotony. The gaussian kernel delivers smoother results than the linear kernel, but also lacks monotony. 

To finally answer the research questions, in particular Q3, the behaviour and sensibility of the 
interpolation to additional known data pairs must be investigated. 

5.5.4 Kernel interpolation with additional known data 
The discontinuities and non-monotonous behaviour in the concentration profile can be explained 
because of the insufficient amount of input data (lack of known colour concentration pairs). This 
additional known data can be either retrieved from experiments or expert knowledge. To investigate the 
effect of additional known data points, the gaussian kernel is used in the RGB space using 9 instead of 
3 known data pairs.  
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The data pairs are retrieved by choosing 9 patches that cover all tracer colours visible and using the 
method described in 5.2 to retrieve the characteristic colours. This is shown in Figure 5.11 for the RGB 
space. 

 

Figure 5.11: Distribution of the patches used to retrieve additional colour concentration pairs in the 
smooth RGB image 

The concentration corresponding to the characteristic colour of the patches is chosen in a linear way by 
assigning them linear decreasing concentration values from A having 1 and H having 0.9. Patch I has 
concentration 0. 

Applying the linear kernel interpolation method with those additional known colour concentration pairs, 
this leads to the concentration profiles as seen in Figure 5.12. 

 

Figure 5.12: Concentration profile (top) for the linear kernel using additional colour concentration 
pairs and its 1d reduction (bottom) 

The concentration profile for the linear kernel with additional known data points is less smooth than 
with only 3 characteristic colours (Figure 5.7) and the monotony is again missing. This result shows that 
the linear kernel is not beneficial for higher numbers of known colour concentration pairs. 

Applying the gaussian kernel method with the parameter 𝛾𝛾 = 9.73 (same parameter as chosen in 5.5.3 
for the RGB space), the resulting concentration profiles can be seen in Figure 5.13. 
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Figure 5.13: Concentration profile (top) for the gaussian kernel using additional colour concentration 
pairs and its 1d reduction (bottom) 

The gaussian kernel interpolation with additional known data points delivers a smooth and monotone 1-
dimensional concentration profile that corresponds to the expected physics (3.4) and the input expert 
knowledge of a linear slope in the concentration as defined in the additional known colour concentration 
pairs. 

In conclusion, research question Q3 can be answered. The gaussian kernel delivers good results and 
maps the additional knowledge given by additional colour concentration pairs in the concentration 
profile. The linear kernel becomes unstable and oscillates for additional colour concentration pairs. 

In conclusion, the gaussian kernel is the preferred method for an interpolation of colours to 
concentrations since it delivers smooth concentration profiles that correspond to the expected physics 
and input expert knowledge. However, for small amounts of known data, the linear kernel is an 
alternative option that has the advantage to not require a parameter.  

The bottom line of this chapter is that the gaussian kernel is the preferred interpolation method when 
high numbers of known data should be considered. To test the possibility and demonstrate the ease of 
inputting expert knowledge to map colours to concentrations by interpolation, the following final test 
will be conducted. 

5.6 Final demonstration 
As a final test, to show the capabilities of introducing additional expert knowledge, the gaussian kernel 
interpolation method in the RGB space is applied to the image.  

The known data pairs are the following. 

- Known colours: Use the colours retrieved from the patches seen in 5.5.4 
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- Known concentrations: Use concentration 1 for patch A, 0.99 for patch H, 0 for patch I and 
linearly distributed values between 0.99 and 1 for patches B-G 

This expert knowledge corresponds to the physics that are expected as seen in 3.4 and can be seen as a 
more realistic choice than in 5.2.  

Using this input data, an interpolant is defined using the kernel method with the gaussian kernel, 𝛾𝛾 =
9.73 in the RGB space following the in 5.5.1 described method. 

The resulting concentration profile and its reduction to 1d can be seen in Figure 5.14.  

 

Figure 5.14: Concentration profile (top) and its 1d reduction (bottom) for the described interpolation 
method 

The resulting concentration profile matches accurately the expert knowledge that has been input by the 
known colour concentration points as a linear slope can be seen from concentration 1 to 0.99. The 
transition zone to the concentration 0 is also accurately mapped according 3.4. The profile is smooth, 
monotone and s-shaped. For illustrative purposes, that interpolation method can also be applied to the 
whole tracer image as shown in Figure 5.15 to obtain a concentration map of the whole tracer image 
(Figure 4.1). 
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Figure 5.15: Kernel interpolation as described in 5.5.1 and 5.6 applied to the tracer image (Figure 4.1) 
and a concentration colour scale (right) 

The shown results for the resulting concentration map are a success and look very promising. The 
physics of the porous media processes as described in 3.4 can be accurately mapped and represented in 
the concentration profile when using gaussian kernel interpolation based on known colour concentration 
pairs. 
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6 Conclusion and Outlook 
The context of this work is to develop a method for analysing CO2 concentrations in porous media of 
FluidFlower experiments. The objective was to find a method for analysing images of multichromatic 
tracers with the goal of extracting tracer concentrations on pixel level, which was not possible before. 
Novel methods have been presented in this work. 

A first approach to adapt the existing DarSIA concentration analysis to multichromatic tracer 
information, in particular the adaptation of the signal reduction applied to images in the HSV colour 
space, proved unsatisfactory. 

This work suggests replacing the signal reduction by an interpolation approach to determine 
concentration on pixel-level of tracer images using known data points. Additionally, the kernel method 
for interpolation is suggested, as it has shown to be promising for multichromatic tracer data. This 
method is suitable to convert complex colour information into physically meaningful data for 
quantitative analysis. The main advantage, especially when using the gaussian kernel, is a smooth and 
continuous interpolation that improves with the number of known data points measured in experiments 
or based on expert knowledge. 

The kernel interpolation method has been applied to a model experiment in different variations with the 
following results. 

(1) The linear kernel delivers good results for a small amount of known data whereas the gaussian 
kernel shows better results for higher numbers of known data. 

(2) The RGB space has been shown as the preferred colour space in comparison to the LAB space.  

Summarising these conclusions, the kernel interpolation method has been found promising to extend the 
functionality of DarSIA to analyse multichromatic tracer data. This extends the toolbox with better 
results for multichromatic tracer data while keeping the established signal reduction for monochromatic 
tracer data. 

A possible next step should be to apply and test the extended method on real CO2 FluidFlower 
experiments with multichromatic CO2 tracers in order to verify the results. Depending on the qualitative 
performance, different kernels and their application in different colour spaces might be considered. The 
found method can be used to conduct quantitative research on FluidFlower experiments. 
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1 Introduction to the Propaedeutic 
The Propaedeutic precedes and lays the base for the studies in the bachelor thesis by covering and 
reviewing the current and relevant literature in that topic. The bachelor thesis with the title 
“Quantitative analysis for FluidFlower experiments using multichromatic tracer data” is a 
contribution to the DarSIA image processing toolbox with the goal of detecting and processing 
multichromatic tracers in images of porous media. In detail this is done at the example of 
multichromatic tracers in the porous structure of the FluidFlower experiments conducted at the 
University of Bergen with the goal of extracting the concentration of that tracer at each pixel of an 
image taken of the experiments. The FluidFlower experiments are carried out by the Department of 
Physics and the mathematical image processing part DarSIA is developed by the Department of 
Mathematics at the University of Bergen. This work is interdisciplinary and the propaedeutic will 
therefore cover a wide range of topics.  

The second chapter following this introduction is about the carbon capture and storage (CCS) 
concept and will cover some motivational literature. This includes a short introduction in the storage 
aspect of CCS and specifically in the geological storage of carbons. This is the real world application 
for the FluidFlower experiments and the studying of CO2 dynamics in porous underground reservoirs. 

The third part focuses on the FluidFlower concept. This is the experimental setup that is used as an 
example application for the DarSIA toolbox in this thesis. A description of the experimental setup 
with its limitations and properties and a motivation on how the experiments are linked to the real 
world and geological carbon sequestration is given. 

The fourth part will cover the basic concepts of describing and modelling flow in porous media. This 
is important in understanding the physics in the porous structure of the FluidFlower and thus 
understanding the phenomena that are present in the experiment. This includes a discussion on 
scales of porous media and the upscaling of physics which will also lay the base and motivate 
concepts used in the DarSIA toolbox which will be presented in the fifth chapter. 

DarSIA (Darcy Scale Image Analysis) is a toolbox for analysing and processing images with the goal of 
retrieving physical data from experimental images. Besides a brief introduction to DarSIA, central 
questions to be discussed in this chapter are: What information is visible in the pictures, and how to 
get from pore scale picture information to Darcy scale information by image processing. 

Determining concentrations of a tracer from images is done in the thesis using kernel methods for 
interpolation. In the last part an introduction to kernel methods is given with the application of using 
it for multivariate interpolation. This will cover a mathematical definition of kernel methods and a 
reasoning on why it is useful and suitable for the application of sparse and multivariate interpolation. 

  



2 CCS and reservoir physics 
Mitigating the climate change is one of the most important and relevant challenges of our time. Since 
CO2 is one of the main drivers of the climate change, the CO2 emissions must decrease drastically 
(IPCC, 2022). Historically the concentration of CO2 in the atmosphere increases constantly as seen in 
the Keeling Curve (Figure 1). This development has to be turned around quickly to mitigate the 
climate change. 

 

Figure 1 CO2 concentration measured at Mauna Loa (Keeling Curve) from (Nordbotten J. , 2012) 

The problem is that there exist drivers of carbon emissions that cannot be neutralized or take a long 
time to turn into carbon neutral processes. Because of that and the still increasing overall carbon 
emissions there is a need for carbon negative methods to compensate those emissions. One 
technique that can produce negative carbon emissions and can therefore help in decreasing the 
overall carbon emissions is carbon capture and storage (CCS) (IPCC, 2023) (a discussion of CCS itself is 
found in (Bui, Adjiman, Bardow, Anthony, & Boston, 2018)). One interesting and widely discussed 
approach is the geological storage of the CO2 by sequestering it in underground reservoirs in so 
called saline aquifers (geological carbon sequestration (GCS)). Those are geological formations of 
porous rocks containing brine. Since the 70s CO2 is injected into the subsurface, for example, in 
enhanced oil recovery (EOR); this means that CO2 is injected into oil reservoirs to produce the oil to 
the surface. However, the first pure large scale industrial CO2 storage project was the Sleipner project 
off the coast of Norway. Both, together with other kinds of geological CO2 storage can be seen in 
Figure 2. Another current project in Norway in the field of CCS is the Northern Lights Project. 



 

Figure 2 Different kinds of geological CO2 storage including pure CO2 storage offshore and onshore from (Nordbotten J. , 
2012) 

The Northern Lights Project is a key component of the Longship Project, which aims to establish 
large-scale carbon capture and storage (CCS) in Norway. The Northern Lights Project includes the 
transport of captured CO2 from industrial sites across Europe and the storage in deep underground 
geological formations off the coast of Norway not far from Bergen. 

 

Figure 3 Concept of the northern lights project inside the Longship project. (from https://norlights.com/ on 05/2023) 

There also exist other techniques of storing CO2 like mineral storage and ocean storage which are not 
as mature and large scale by now as storing CO2 in underground reservoirs (Bui, Adjiman, Bardow, 
Anthony, & Boston, 2018). 

2.1 Geological carbon sequestration (GCS) 
In this chapter the process of CO2 injection and storage in a geological formation is described 
qualitatively following Chapter 3.10 in (Nordbotten J. , 2012). 

The CO2 is transported in the deep underground formations through a well and is then injected in the 
reservoir as also seen in Figure 2. When CO2 is injected, it has a lower density than the brine and is 
therefore buoyant. Primarily it is trapped by structural trapping which in its simplest form means that 
the reservoir with a high permeability is overlain by a low permeable layer called the cap rock. This 



trapping layer prevents the mobile CO2 to move upwards and pass the trapping layer towards the 
surface. Over time, residual and solubility trapping become the main drivers for the CO2 trapping. 
Solubility trapping is the process of CO2 dissolving in the brine and increasing the density of the 
saturated brine which leads to the dissolved CO2 propagating downwards, driven by gravity. Residual 
trapping describes the process of CO2 being trapped inside the pore space and being held in place by 
capillary pressure. In the long run (over a time scale of 1000 to 10000 years), mineral trapping - the 
binding of CO2 in the reservoir by geochemical reactions - becomes dominant as seen in Figure 4. 
Overall, this means that the security of the storage is increasing with time because solubility and 
mineral trapping are more stable and secure than pure structural trapping. 

 

Figure 4 Schematic of the evolution of CO2 from free phase to less leakage - prone states (from IPCC, 2005) through 
(Nordbotten J. , 2012, p. 112) 

The main advantage of GCS is the large scalability and maturity since it is already being commercially 
used. However there are also disadvantages of GCS like storage security uncertainties, legal issues 
and the public perception. 

To rank, optimize, screen and forecast those carbon underground storage sites and their storage 
security, it is necessary to use simulations and models of underground reservoirs at a large time scale 
that go far into the future. Since there exists no long-term data on carbon storage that could be used 
to validate and verify the simulations and models, there is a need for another solution. The 
FluidFlower experiments that are described in the following chapter are an approach to tackle this 
issue. 

3 FluidFlower – The experimental set up 
This chapter is based on the papers about the FluidFlower of Martin Fernø (Fernø, et al., 2023) and 
Kristoffer Eikehaug (Eikehaug, et al., 2023). 

The FluidFlower is a laboratory sized experiment consisting of a quasi-two-dimensional transparent 
container that can be filled with unconsolidated sands and fluids. The FluidFlower exists in different 
scales, the room scale rig and the table size rig. The room scale rig with the dimensions of 3m x 2m 
has been used in the International Benchmark studies (Flemisch, 2023). The table sized rig with the 



dimensions of 0.9m x 0.6m has been used in the experiments for this thesis. Quasi two dimensional 
means that the two dimensions, width and height, dominate the third dimension, depth, in orders of 
magnitude as seen in Figure 5. The sands can be arranged into geological structures (geometries) 
that represent real underground reservoirs. In Figure 5, in the room sized version of the FluidFlower, 
a geometry is visible that aims on reproducing the underground layers of the northern sea (Fernø, et 
al., 2023). The FluidFlower also has several injection points in the back that make it possible to inject 
fluids to investigate multiphase flow in those porous media structures. For example it is possible to 
inject CO2 into the structure and trace the movements of it. This is for example done with the help of 
pH-indicators that are described in the chapter about fluids in the FluidFlower (3.2). 

The goal of the FluidFlower concept is the possibility of making underground porous media flow 
accessible in the lab, to on the one hand, validate and compare porous media models to real 
experiments -this has been done in the International Benchmark Studies (Flemisch, 2023) where the 
porous media models of research groups all over the world were being tested against the 
FluidFlower experiment – and, on the other hand investigate CO2 flow and trapping mechanisms. 
Hereby, the advantages of the FluidFlower are the realistic and simultaneous representation of 
trapping mechanisms and the high repeatability (more in 3.3). Another important aspect of the 
FluidFlower concept is the possibility of public outreach and to communicate the concept of CCS, as 
has been done in the Natural History Museum in Bergen. This setup can also be used in other 
contexts and applications. 

The data acquisition of the experiment is done by camera with time lapse picture series. These 
pictures, taken in specified time steps, can be used to identify and track the dynamics and 
happenings in the FluidFlower by using image processing (more in chapter 5). Following standardized 
protocols, other data like the injection rates of fluids like CO2 and the mass of displaced fluids in the 
overflow are measured and logged. 

 

Figure 5 The two available sizes of the FluidFlower. On the left the table sized rig and on the right the room sized rig. In the 
rig on the right a CO2 injection in the geometry can be observed. From (Eikehaug, et al., 2023) 



The following two chapters about the setup of the FluidFlower for CO2 injection experiments are 
based on the paper of Malin Haugen (Haugen, et al., 2023). 

3.1 Porous media in the FluidFlower 
The FluidFlower is filled with a variety of quartz sands with differing permeabilities and capillary 
entry pressures to replicate the characteristics of an underground geological reservoir. The sands are 
categorised based on their grain size, and for each grain size category, the permeability and capillary 
entry pressure are measured. All the sands used in the experiment have approximately the same 
porosity. Prior to its use in the FluidFlower experiment, the sands undergo an acid treatment to 
remove any carbonate impurities and are washed with tap water to prevent the occurrence of CO2 

mineralization. For a detailed description of the sand treatment process and property 
measurements, please refer to Haugen et al. (2023). 

 

Figure 6 Porosity, absolute permeability K[D] and capillary entry pressure for a few of the different sands in the FluidFlower 
from (Haugen, et al., 2023, p. 5) 

3.2 Fluids in the FluidFlower 
The porous sand geometry is initially saturated with a fluid consisting of an aqueous pH-indicator 
mixture referred to as the formation water. A pH-sensitive dye is used as the indicator that 
undergoes a colour change upon CO2 dissolution that changes the pH-value. This colour change is 
essential for CO2 detection using visual observation and image analysis. Different pH-indicators with 
varying colours and sensitivities exist, some of which not only change their colour intensity but also 
exhibit completely different colours depending on the CO2 concentration. These are referred to as 
multichromatic tracers. 



 

Figure 7 Fluids used in the FluidFlower and their expected pH values from (Haugen, et al., 2023) 

Multichromatic tracers have the advantage that they can display and distinguish with higher 
sensitivity between more concentrations than a monochromatic tracer that only changes its colour 
intensity. It is therefore desirable to be able to handle these kind of tracers in the experimental 
design and image processing to get more accurate results (more on that in chapter 5.2). However, 
these multichromatic tracers are currently not compatible with DarSIA, which is only able to handle 
monochromatic data. The focus of this thesis is to optimize the image analysis and address the 
challenge of handling multichromatic tracers in DarSIA (more in 5.3). 

3.3 Study CO2 trapping mechanisms with the FluidFlower 
The FluidFlower is a laboratory scale experiment that is conducted at laboratory conditions. This 
means the length scale of the investigated processes is somewhat smaller than in real reservoirs. 
Real underground reservoirs have a extend to tens or hundreds of kilometres in horizontal direction 
and hundreds of meters in vertical direction. The FluidFlower in contrast has dimensions of the order 
of a table. Also, the sands used in the FluidFlower have different properties than an actual reservoir 
rock. As seen when comparing the two tables Figure 6 and Figure 8, the permeability of the rocks in a 
reservoir is a few orders of magnitude smaller than the permeability of the sands in the FluidFlower. 
Also the temperature and pressure in the lab are different to the conditions in the reservoir. 

 

Figure 8 Rock properties in an actual underground reservoir from (Nordbotten J. , 2012, p. 185) 



The fundamental processes of multiphase flow in porous media are still the same as at reservoir 
conditions and all the important trapping mechanisms are also present in the FluidFlower. A more 
detailed discussion on the similarity of the experiments and the real world can be found in (Fernø, et 
al., 2023). 

Structural trapping is present with the different sand zones in the rig that have different 
permeabilities and capillary entry pressures. The structural trapping in the FluidFlower is caused by 
the contrast in the capillary entry pressure more than by the different permeabilities which would be 
the expected cause at field scale.  

Dissolution trapping occurs when the CO2 dissolves into the brine at the interface between the CO2 

and the originally present brine water phase. Residual trapping is also observed before the CO2 

dissolves into the water. Convective mixing occurs, when the water with dissolved CO2 migrates 
downwards due to gravitation and the difference in density. This leads to fingering in the long run. 

Mineral trapping is by design not part of the studies, to exclude pure chemical processes. 

In conclusion, the flow and trapping mechanisms in the FluidFlower are representative for the 
mechanisms in the reservoir but at a different time scale. This results in an hour in the FluidFlower 
being equivalent to hundreds of years in the real world (See (Anthony R. Kovscek, 2023) for a 
detailed scale analysis). 

4 Flow in porous media 
This chapter gives a short overview over the dynamics and properties of flow in porous media and its 
modelling based on the book Multiphase Flow and Transport Processes in the Subsurface by Rainer 
Helmig (Helmig, 1997). 

The FluidFlower is filled with different sands that can be described as a porous media since it is a 
material with pores (voids that allow fluids to flow). In section 4.2 the porosity which is one of the 
main characteristic of a porous medium will be presented. Injecting CO2 and other fluids into the 
FluidFlower makes it also necessary to understand and model flow in porous media, to describe the 
happenings in the FluidFlower. In the FluidFlower, with two or more phases being present in the 
porous media, the processes are very complex. In this chapter, the basic concepts are presented to 
lay the basis for a more sophisticated understanding. 

4.1 Porous Media and upscaling 
A porous medium is a material containing void space called pores. This means that a lot of things 
around us are, to a different degree, porous. For example, our brain is a porous medium, but also 
rocks - including the sedimentary rocks in underground reservoirs - are porous. This stresses the 
importance of understanding and describing porous media. 

Describing porous media is possible on different length scales. For example, on the molecular scale, 
all the properties of porous media and flow in porous media can be described by the interactions of 
the individual atoms and molecules with each other and boundary conditions. This can be done 
using, for example, molecular dynamics simulations. For large domains of porous media, this 
approach is not possible since the number of molecules is way too big and the calculations would 
exceed the available computational power.  

At a slightly larger scale, the porous media can be described by explicitly describing the pores and 
their geometry. This is also not feasible when looking at larger domains of porous media because the 
pore structure might be unknown, impossible to find or too complicated to explicitly describe. 



When looking at even larger scales, it is necessary to average the properties of porous media over a 
certain volume. This is a widely discussed and investigated topic in the porous media community. For 
different processes and different properties of the porous media it is necessary to consider different 
length scales. This is a very complex and interesting topic since it is necessary to describe huge 
systems of porous media (e.g. reservoirs) using averages while still taking into account that all the 
fundamental phenomena happen at the pore scale. 

In this work especially the REV and Darcy scale will be of interest. The REV volume is the length scale 
on which porosity is defined (more in the following section) and the Darcy scale is the scale on which 
Darcy’s law is defined (more in section 4.3). 

4.2 Porosity and REV 
Porosity is the main property to describe a porous medium. The porosity in a certain volume 𝑉𝑉0 of 
the porous media is defined by  

𝜑𝜑𝑉𝑉0 =  
𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 

with the void space (pore space) 𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 and 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, the total volume of 𝑉𝑉0. 

It is easy to imagine that in an heterogenous medium the porosity changes with the choice of the size 
of 𝑉𝑉0. For example when choosing 𝑉𝑉0 very small so that it lays completely in a void space, the 
porosity is 1 but, when increasing 𝑉𝑉0, the porosity decreases when also solid matter is included. 
Therefore the properties of the porous media are defined on a representative elementary volume 
(REV) where the parameters like porosity are ideally independent of the choice of 𝑉𝑉0. 

The definition of the REV is described by the example of the average mass density of a fluid in a two 
phase porous media system as seen in (Helmig, 1997, pp. 25, 26). 

When choosing 𝑉𝑉0 too small, the average mass density is not statistically representative of the whole 
medium. That is why, when increasing the size of 𝑉𝑉0, the average mass density calculated in 𝑉𝑉0 
fluctuates depending on its size. These fluctuations disappear when the volume gets big enough 
which means that the average mass density is independent from the chosen averaging volume 𝑉𝑉0. 
This length scale is the choice for the REV. When looking at larger length scales of 𝑉𝑉0, fluctuations 
occur again because large heterogeneities, like fractures in the porous media, appear on that scale. 
This behaviour is shown in Figure 9. 



 

Figure 9 Different length scales and the definition of the REV at the example of the average mass density of a fluid in a two 
phase porous media system. Taken from (Helmig, 1997) 

4.3 Darcy’s law 
Darcy’s law is the fundamental relation to describe flow in porous media. It is based on the 
experiments of Henry Darcy on the flow of water through sand filters. In its simplest one dimensional 
form, it looks like the following 

𝑞𝑞𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = −
𝑘𝑘
𝜇𝜇𝜇𝜇
∆𝑝𝑝 

The flux 𝑞𝑞𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑉𝑉
∆𝑡𝑡∙𝐴𝐴

 is the flowing volume per time of a single fluid divided by the surface 𝐴𝐴 where 
it flows through. This flux is calculated using the viscosity 𝜇𝜇 of the fluid and the permeability 𝑘𝑘 of the 
medium. The length 𝑙𝑙 is the length of the medium and the pressure difference ∆𝑝𝑝 is the pressure 
potential that makes the fluid flow. 

This hydraulic pressure can be calculated using the relation 

∆𝑝𝑝 = 𝜌𝜌𝜌𝜌∆ℎ 

With the fluid density 𝜌𝜌 and the so called hydraulic head ∆ℎ. These variables can be seen in Figure 
10. 



 

Figure 10 Schematic of the Darcy experiment taken from (Nordbotten J. , 2012) 

The flow velocity 𝑢𝑢 of the fluid in the pores is different since the flow does not occur all over the 
surface due to the porous character of the medium. It is related with the flux via 

𝑢𝑢 =  
𝑞𝑞𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝜑𝜑

 

It is also possible to write Darcy’s law in a differential way when transferring to an infinitesimal 
length 𝑙𝑙 → 𝑑𝑑𝑑𝑑. Also extensions for three dimensions and multiphase flow exist.  

A derivation of Darcy’s law from the momentum equation can be found in (Helmig, 1997). 

As seen, Darcy’s law exists on a scale level where the flow through porous media can be 
characterized by its permeability. This scale is the Darcy scale. 

4.3.1 Mass conservation 
The most fundamental term to describe a medium is the mass conservation. It states that the change 
of mass in a control volume (here the REV) is equal to the mass flux across its surface. It takes the 
following form 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜑𝜑𝜑𝜑) + ∇(𝜌𝜌𝜌𝜌) = ℎ 

With the flux 𝑞𝑞 and a sink or source term ℎ. 

This links the porosity with the mass 𝑚𝑚 = 𝜑𝜑𝜑𝜑 and it links the porosity to Darcy’s flow by including 𝑞𝑞. 
This is a model based on the mass conservation and it can be solved with given start and boundary 
values. 



4.4 Transport in porous media 
The pH-indicator that is present in the fluids of the FluidFlower can be seen as a component that 
flows with the fluid it is mixed into. As such, it can be described using the balance equation for a 
component which has the following form (Helmig, 1997, p. 115) 

𝜕𝜕(𝜑𝜑𝜑𝜑)
𝜕𝜕𝜕𝜕

+ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢𝑢𝑢𝑢𝑢 − 𝜑𝜑𝜑𝜑∇𝑐𝑐) = 𝑟𝑟 

with the components concentration 𝑐𝑐 = 𝜚𝜚𝜚𝜚, the flux 𝑞𝑞 =  𝑢𝑢𝑢𝑢, the molecular Diffusion 𝐷𝐷 and a 
sink/source term 𝑟𝑟. 

The term 𝜑𝜑𝜑𝜑∇𝑐𝑐 describes the non-convective mass flow, so the movement of the component that is 
caused by the Brownian motion and not by the flow of the fluid. The magnitude of order of this term 
is usually way smaller than the convection term and therefore vanishes. 

The assumption is that the pH-indicator in the FluidFlower has small to no  effect on the fluid flow. 
This is important because the indicator's purpose is to visualize physics without changing the physics 
being studied. In such passive tracer experiments, the concentration does not enter the fluid flow 
equations. 

5 Image analysis and information upscaling 
Image analysis describes the process of extracting information from an image using digital image 
processing. Digital image processing in general means applying algorithms or functions on an image. 

In the case of the FluidFlower images, image analysis is for instance used with the goal of extracting 
concentration data from a photograph of the experiment. More accurately, the goal is to obtain the 
concentration of a chromatic tracer in the porous media in every pixel. This process also contains the 
upscaling of the information in the picture to Darcy scale which is equivalent to the upscaling of 
porous media to the REV scale (as discussed in chapter 4). 

The particularity about the image processing of FluidFlower images is that it uses physical images 
that contain physical information, which we desire to extract, adding an extra requirement to the 
processing of the image in comparison to conventional techniques. The physical data must stay 
invariant in the images over the course of the processing. 

DarSIA uses several image processing tools to extract information from the images. These include the 
smoothing or denoising of images, the cropping and pre-processing of images and the colour 
transformation of images. 

A full description and all concepts are found in the paper for the DarSIA project (Nordbotten, et al., 
2023). 

5.1 Images and colour spaces 
A digital two dimensional image is represented by a two dimensional grid consisting of pixels. The 
image can be seen as a function that assigns a value for each coordinate of those pixels and is 
defined on those pixels. The value it takes in each pixel can be different depending on the type of 
image. A coloured RGB image for example takes values from the three dimensional RGB colour space. 
In the following section, the RGB and the LAB colour space are introduced. However, there exist a 
variety of other colour spaces. 



5.1.1 RGB colour space 
In the RBG colour space, each colour is represented by a three dimensional vector (triplet) that takes 
the values of each of the three colour channels red, green and blue. Those values depend on how 
much the single colour channel contributes to the desired colour. 

The range of values depends on the numerical representation of those colour channels. The most 
common is the 8 bit representation where the channels take integer numbers between 0 and 255. 
But also float numbers between 0 and 1 are helpful representations. 

5.1.2 LAB colour space 
The LAB or CIELAB colour space is a three dimensional colour space, meaning each colour is 
represented by a three dimensional vector. L stands for the lightness and a and b stand for the four 
colours magenta, green, blue and yellow. The speciality of the LAB colour space is that it is designed 
to be a so called uniform colour space, meaning that the perceptual difference between colours is 
directly related to its difference in the colour space.  

A full description of the LAB colour space and the measurement of differences in that colour space is 
found in (Robertson, 1977). 

5.2 DarSIA method of concentration-analysis 
The concentration analysis in DarSIA is a framework for any kind of tracer concentration analysis. It 
has been used in the International Benchmark Studies (Flemisch, 2023) to separate the gas phase of 
CO2 from the dissolved gas in the FluidFlower (this can be seen in Figure 11). 

The concentration analysis is a collection and order of image processing routines to in the end get a 
map of concentrations of a tracer for each pixel of the image. The tracer is hereby a coloured tracer 
visible in the picture like, for example, a pH-indicator. The objective is to translate the colour of the 
tracer and intensity to a concentration. 

In the following a few of those image processing routines that accomplish this are presented. 

5.2.1 Pre-processing the image(s) 
The first step is the pre-processing of the image. Here the image gets cropped to the region that is of 
interest. Also the colours of the image are corrected in order to have reproducible results. This is 
done by using a colour palette that is attached to the FluidFlower and visible in the image (the colour 
palette can be seen in Figure 5 in the top left corner of the big FluidFlower rig). Other corrections are 
bulk correction and curvature correction. 

5.2.2 Smoothing and denoising the images 
Smoothing the image is a trade-off between reducing noise in the image and not changing the image 
too much to preserve information. In the FluidFlower pictures, this means that we want to smooth 
over the single sand grains but still maintain edges and the distribution of the coloured tracer in the 
image. In DarSIA, this is done using the Rudin-Osher-Fatemi model (ROF-model). The presentation of 
that concept is based on the paper on DarSIA (Nordbotten, et al., 2023). 

The above mentioned trade off to get the denoised image 𝑢𝑢�  takes the following form 

𝑢𝑢� = arg 𝑖𝑖𝑖𝑖𝑖𝑖
𝑢𝑢
 𝐷𝐷(𝑢𝑢0,𝑢𝑢) + 𝑁𝑁�𝑢𝑢;μu0� 

With 𝐷𝐷(𝑢𝑢0,𝑢𝑢) measuring the deviation between the image 𝑢𝑢 and the original noisy image 𝑢𝑢0 and 
𝑁𝑁�𝑢𝑢; μu0� measuring the noise of the image with the parameter 𝜇𝜇𝑢𝑢0. 



Following the ROF-model introduced in 1992 by Rudin, Osher and Fatemi (Rudin, Osher, & Fatemi, 
1992) 𝐷𝐷 is set to be the weighted 𝐿𝐿2 norm and 𝑁𝑁 is set to be the total variation (TV) 

𝐷𝐷�𝑢𝑢0,𝑢𝑢;𝜔𝜔𝑢𝑢0� =
1
2
∥ 𝑢𝑢0 − 𝑢𝑢 ∥2,𝜔𝜔𝑢𝑢0

2 =
1
2
∫ 𝜔𝜔𝑢𝑢0(𝑢𝑢0 − 𝑢𝑢)2𝑑𝑑𝑑𝑑 

and 

𝑁𝑁�𝑢𝑢;𝜇𝜇𝑢𝑢0� = 𝜇𝜇𝑢𝑢0|∇𝑢𝑢|1 = 𝜇𝜇𝑢𝑢0∫ |∇𝑢𝑢|𝑑𝑑𝑑𝑑 

Using the Euler Lagrange formalism, this leads to differential equations that are non-linear and 
expensive to solve. These can be solved numerically using, for example, the gradient descent method 
as proposed by the paper of Rudin Osher and Fatemi (Rudin, Osher, & Fatemi, 1992). Other more 
advanced methods for solving this problem are the Chambolle or the Bregman algorithm.  

This is especially more expensive to solve than other denoising minimisation problems - like the 
Tikhonov regularisation, that uses the least squares error for the noise measurement. Nevertheless, 
the ROF regularisation is preferred because it preserves edges and therefore information. 

This smoothing of the image over the sand grains in the FluidFlower is equivalent to the upscaling of 
the porous media properties from the pore scale to the REV scale. In the original image the pores of 
the sand grains are still visible. The smoothing then scales that up by making the concentration, 
which is represented by a colour in the picture, continuous over the pores. The parameter 𝜇𝜇𝑢𝑢0 
defines the scale of the smoothing. Higher values of 𝜇𝜇𝑢𝑢0 means more smoothing and less details. A 
more detailed discussion on restoration and smoothing of DarSIA images can be found in 
(Nordbotten, et al., 2023). 

5.2.3 Signal to concentration reducing and modelling 
After smoothing the image, the final step is the translation of the colour to a concentration. Currently 
this is done in DarSIA in two steps. First, the colour is reduced to a monochromatic signal, meaning a 
scalar value of the signal for each pixel. Then, this value is modelled to a concentration using a simple 
linear model. Those models can also be calibrated when a whole time series of pictures exists. 

5.3 Limitations 
DarSIA has been successfully used in the international benchmark studies for the phase separation. 
Here, the concentration analysis only distinguishes between the tracer being present, which delivers 
concentration 1, and no tracer being present, which delivers the concentration 0 (see Figure 11 left).  

It is possible to extract continuous concentration profiles for monochromatic tracers that change 
their colour intensity with their concentration using the above described methods of signal reduction 
and signal to concentration modelling.  

However, currently it is not possible to analyse multichromatic tracers that take different colours 
depending on their concentration like for example pH-indicators. This is the main motivation for the 
thesis following up this propaedeutic since those indicators are able to deliver more accurate 
concentration data and results (an example multichromatic tracer experiment can be seen in Figure 
11 on the right). 



 

Figure 11 Phase segmentation in the Benchmark studies (left) and a multicolour tracer experiment (right) 

6 Interpolation with kernel methods 
Kernel methods are an approach for approximating and predicting data such as for example 
interpolation. This approach is especially popular in machine learning because it can easily handle 
higher dimensional data, as seen in the following sections. This chapter follows the lecture notes of 
Prof. Haasdonk on Approximation with Kernel Methods at University of Stuttgart in 2022 (Haasdonk, 
2022). 

6.1 Definition of kernel methods 
The central element of the kernel methods is a kernel which is a symmetric function  

𝑘𝑘: Ω × Ω⟶ ℝ 

on an arbitrary non-empty set Ω. For example this could be the polynomial kernel  

𝑘𝑘𝑝𝑝(𝑥𝑥1, 𝑥𝑥2) = (〈𝑥𝑥1,𝑥𝑥2〉 + 𝑎𝑎)𝑏𝑏  

with the parameters 𝑎𝑎, 𝑏𝑏 ∈ ℝ. The simplest case of that polynomial kernel with 𝑎𝑎 = 0 and 𝑏𝑏 = 1 is 
the linear kernel  

𝑘𝑘𝑙𝑙(𝑥𝑥1,𝑥𝑥2) = 〈𝑥𝑥1,𝑥𝑥2〉 

Another example is the gaussian kernel 

𝑘𝑘𝑔𝑔(𝑥𝑥1,𝑥𝑥2) = exp(−𝛾𝛾‖𝑥𝑥1 − 𝑥𝑥2‖2) 

with the parameter 𝛾𝛾 > 0. 

The model, that is then constructed is typically of the form 

𝑠𝑠(𝑥𝑥) = ∑𝑖𝑖=1𝑁𝑁  𝛼𝛼𝑖𝑖𝑘𝑘(𝑥𝑥, 𝑥𝑥𝑖𝑖),  𝑥𝑥 ∈ Ω 

with coefficients  𝛼𝛼𝑖𝑖  and support vectors {𝑥𝑥𝑖𝑖, … , 𝑥𝑥𝑁𝑁} ⊂ Ω. The function 𝑠𝑠(𝑥𝑥) is called the approximant 
and determining the coefficients  𝛼𝛼𝑖𝑖  is called training the model. 

6.2 Interpolation using kernels 
Using kernel methods is one of many possibilities for multivariate interpolation. Multivariate 
interpolation is the interpolation of a function of more than one variable which is the case if Ω has 
dimension 𝑑𝑑 > 1. The points that are going to be interpolated are called scattered data points. 

Interpolation problem definition 
Given a scattered data set which is a set of points {𝑥𝑥𝑖𝑖, … , 𝑥𝑥𝑁𝑁} ⊂ Ω with corresponding target values 
{𝑦𝑦𝑖𝑖, … ,𝑦𝑦𝑁𝑁} ⊂ ℝ, the interpolation problem is to find an interpolant 𝑠𝑠: Ω → ℝ that satisfies 𝑠𝑠(𝑥𝑥𝑖𝑖) =
yi. 



Kernel interpolation 
It is possible to use the aforementioned kernel methods to interpolate such scattered data. The 
interpolant is obtained by solving  

𝐾𝐾𝐾𝐾 = 𝑦𝑦 

with the kernel matrix 𝐾𝐾 = �𝑘𝑘�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗��
𝑖𝑖,𝑗𝑗=1

𝑁𝑁
, the support points {𝑥𝑥𝑖𝑖, … , 𝑥𝑥𝑁𝑁} ⊂ Ω, the target values 

𝑦𝑦 = (𝑦𝑦𝑖𝑖)𝑖𝑖=1𝑁𝑁  and the coefficient vector 𝑎𝑎 = (𝑎𝑎𝑖𝑖)𝑖𝑖=1𝑁𝑁 . 

The interpolant is then the approximant from above and is defined via  

𝑠𝑠(𝑥𝑥) = ∑𝑖𝑖=1𝑁𝑁  𝛼𝛼𝑖𝑖𝑘𝑘(𝑥𝑥, 𝑥𝑥𝑖𝑖),  𝑥𝑥 ∈ Ω 

6.2.1 Existence and uniqueness of kernel interpolation 
To show the advantages of kernel methods, a definition of definiteness and the Mairhuber-Curtis 
theorem will be presented in the following. 

Definition of kernel definiteness 
The kernel 𝑘𝑘 is denoted strictly positive definite (s.p.d.) if for all 𝑛𝑛 ∈ ℕ and all 𝑋𝑋 = {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑛𝑛 ⊂ Ω with 
distinct points, i.e. 𝑥𝑥𝑖𝑖 ≠ 𝑥𝑥𝑗𝑗 , 𝑖𝑖 ≠ 𝑗𝑗 holds 

𝛼𝛼𝑇𝑇𝐾𝐾𝐾𝐾 > 0           ∀𝛼𝛼 ∈ ℝ𝑛𝑛 ∖ {0} 

This condition is for example satisfied for the Gaussian kernel. 

Theorem: Existence and uniqueness of kernel interpolation 
Let {𝑥𝑥𝑖𝑖, … , 𝑥𝑥𝑁𝑁} ⊂ Ω be distinct data points and the kernel 𝑘𝑘 being s.p.d. 

Then there exists a unique solution of the form 𝑠𝑠(𝑥𝑥) = ∑𝑖𝑖=1𝑁𝑁  𝛼𝛼𝑖𝑖𝑘𝑘(𝑥𝑥, 𝑥𝑥𝑖𝑖),  𝑥𝑥 ∈ Ω that satisfies the 
interpolation condition 𝑠𝑠(𝑥𝑥𝑖𝑖) = yi. 

6.2.2 Advantages of kernel interpolation 
To discuss the advantages of the kernel approach the Haar space is defined and the Mairhuber-Curtis 
theorem is presented. 

Definition of Haar space 
Let Ω ⊂ ℝ𝑑𝑑 contain at least 𝑁𝑁 points and 𝑉𝑉 ⊂ 𝒞𝒞(Ω) be an 𝑁𝑁-dimensional linear space. Then 𝑉𝑉 is 
called a Haar space of dimension 𝑁𝑁 on Ω if for arbitrary distinct points {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑁𝑁 ⊂ Ω and arbitrary 
{𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑁𝑁 ⊂ ℝ, there exists a unique function 𝑠𝑠 ∈ 𝑉𝑉 with 𝑠𝑠(𝑥𝑥𝑖𝑖) = 𝑦𝑦𝑖𝑖  for 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁. 

Mairhuber-Curtis Theorem 
Let Ω ⊂ ℝ𝑑𝑑 ,𝑑𝑑 > 1 be a set with nonempty interior. Then there exists no Haar space on Ω of 
dimension 𝑁𝑁 > 1. 

A proof can be found in (Haasdonk, 2022). 

As a consequence of this theorem, the ansatz-space for the interpolation 𝑉𝑉 has to be chosen 
dependent on the data. This is, for example, fulfilled with the kernel approach which makes it 
appropriate for higher dimension interpolation. 

In comparison, multivariate polynomial interpolation has the problem of dimensionality. For fixed p 

and growing dimension d, the dimension dim�ℙ𝑝𝑝�ℝ𝑑𝑑�� = �𝑑𝑑+𝑝𝑝𝑝𝑝 � of the polynomial interpolation 



ansatz space grows exponentially and therefore requires a lot of interpolation points to solve the 
interpolation problem. 

In conclusion, the kernel methods are desirable to use for multivariate interpolation. 

6.3 Example 
In the case of this work, Ω = 𝑅𝑅𝑅𝑅𝑅𝑅 ⊂ ℝ3  becomes the colour space. The scattered data points are 
colours 𝑐𝑐𝑖𝑖 ∈ Ω in the colour space RGB and 𝑣𝑣𝑖𝑖 ∈ ℝ are their corresponding pH-values. 

Interpolating these pH-values between the given colours kernel interpolation as described in the 
previous section can be used by applying the described procedure. 

This is being used to develop and extend the functionality of DarSIA, the implementation and 
methodology is described in the thesis itself. 

Without intending to complicate the limited presentation in this propaedeutic report, it is important 
to note that, in the realization of the interpolation for this work, the space Ω is actually not the RGB 
space anymore because the subtraction of images produces negative colours. Still, the above 
example provides and communicates the essence. 
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